Single 400MHz Fixed Gain Amplifier with Enable

élantec.

The EL5196 and the EL5196A are fixed gain amplifiers with a bandwidth of 400 MHz , making these amplifiers ideal for today's high speed video and monitor applications. These amplifiers feature internal gain setting resistors and can be configured in a gain of $+1,-1$ or +2 . The same bandwidth is seen in both gain-of-1 and gain-of-2 applications.

The EL5196A also incorporates an enable and disable function to reduce the supply current to $100 \mu \mathrm{~A}$ typical per amplifier. Allowing the $\overline{C E}$ pin to float or applying a low logic level will enable the amplifier.

The EL5196 is offered in the 5-pin SOT-23 package and the EL5196A is available in the 6-pin SOT-23 as well as the industry-standard 8-pin SO packages. Both operate over the industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Pinouts

Features

- Gain selectable (+1, $-1,+2$)
- $400 \mathrm{MHz}-3 \mathrm{~dB}$ BW $\left(\mathrm{A}_{\mathrm{V}}=1,2\right)$
- 9mA supply current
- Fast enable/disable (EL5196A only)
- Single and dual supply operation, from 5 V to 10 V or $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$
- Available in SOT-23 packages
- Triple (EL5396) available
- 200 MHz , 4mA products available (EL5197 \& EL5397)

Applications

- Video amplifiers
- Cable drivers
- RGB amplifiers
- Test equipment
- Instrumentation
- Current to voltage converters

Ordering Information

PART NUMBER	PACKAGE	TAPE \& REEL	PKG. DWG. \#
EL5196CW-T7	5-Pin SOT-23	$7 "(3 \mathrm{~K} \mathrm{pcs)}$	MDP0038
EL5196CW-T7A	5-Pin SOT-23	7" (250 pcs)	MDP0038
EL5196ACW-T7	6-Pin SOT-23	$7 "(3 \mathrm{~K} \mathrm{pcs)}$	MDP0038
EL5196ACW-T7A	6-Pin SOT-23	$7 "(250 \mathrm{pcs})$	MDP0038
EL5196ACS	8-Pin SO	-	MDP0027
EL5196ACS-T7	8-Pin SO	$7 "$	MDP0027
EL5196ACS-T13	8-Pin SO	$13 "$	MDP0027

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Supply Voltage between V_{S} and V_{S}. 11 V
Maximum Continuous Output Current . 50mA
Operating Junction Temperature . $125^{\circ} \mathrm{C}$
Power Dissipation . See Curves

Pin Voltages. $\mathrm{V}_{\mathrm{S}^{-}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{S}^{+}+0.5 \mathrm{~V}}$
Storage Temperature. $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Ambient Temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
AC PERFORMANCE						
BW	-3dB Bandwidth	$A_{V}=+1$		400		MHz
		$A_{V}=-1$		400		MHz
		$A_{V}=+2$		400		MHz
BW1	0.1 dB Bandwidth			35		MHz
SR	Slew Rate	$\mathrm{V}_{\mathrm{O}}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+2$	2400	2900		$\mathrm{V} / \mathrm{\mu s}$
ts	0.1\% Settling Time	$\mathrm{V}_{\text {OUT }}=-2.5 \mathrm{~V}$ to $+2.5 \mathrm{~V}, \mathrm{AV}=-1$		9		ns
e_{N}	Input Voltage Noise			3.8		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
$\mathrm{i}^{\mathrm{N}}{ }^{-}$	IN- Input Current Noise			25		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
${ }^{\mathrm{i}} \mathrm{N}^{+}$	IN+ Input Current Noise			55		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
dG	Differential Gain Error (Note 1)	$A_{V}=+2$		0.035		\%
dP	Differential Phase Error (Note 2)	$A_{V}=+2$		0.04		-

DC PERFORMANCE

$V_{\text {OS }}$	Offset Voltage		-15	1	15	mV
$\mathrm{T}_{\mathrm{C}} \mathrm{V}_{\text {OS }}$	Input Offset Voltage Temperature Coefficient	Measured from $T_{\text {MIN }}$ to $T_{\text {MAX }}$		5		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
A_{E}	Gain Error	$\mathrm{V}_{\mathrm{O}}=-3 \mathrm{~V}$ to +3 V	-2	1.3	2	$\%$
$\mathrm{R}_{\mathrm{F}}, \mathrm{R}_{G}$	Internal R_{F} and R_{G}		320	400	480	Ω

INPUT CHARACTERISTICS

CMIR	Common Mode Input Range		$\pm 3 \mathrm{~V}$	$\pm 3.3 \mathrm{~V}$		V
$+I_{\text {IN }}$	+ Input Current		-120	40	120	$\mu \mathrm{~A}$
I_{IN}	- Input Current		-40	4	40	$\mu \mathrm{~A}$
$\mathrm{R}_{\text {IN }}$	Input Resistance	at $I_{\mathrm{N}^{+}}$		27	$\mathrm{k} \Omega$	
$\mathrm{C}_{\text {IN }}$	Input Capacitance			0.5	pF	

OUTPUT CHARACTERISTICS

V_{O}	Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega$ to GND	$\pm 3.4 \mathrm{~V}$	$\pm 3.7 \mathrm{~V}$		V
		$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ to GND	$\pm 3.8 \mathrm{~V}$	$\pm 4.0 \mathrm{~V}$		V
IOUT	Output Current	$\mathrm{R}_{\mathrm{L}}=10 \Omega$ to GND	95	120	mA	

SUPPLY

ISON	Supply Current - Enabled	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$	8	9	11	mA
ISOFF	Supply Current - Disabled	No load, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$		100	150	$\mu \mathrm{~A}$
PSRR	Power Supply Rejection Ratio	DC, $\mathrm{V}_{S}= \pm 4.75 \mathrm{~V}$ to $\pm 5.25 \mathrm{~V}$	55	75		dB

Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}^{+}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}^{-}}=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
-IPSR	- Input Current Power Supply Rejection	DC, $\mathrm{V}_{S}= \pm 4.75 \mathrm{~V}$ to $\pm 5.25 \mathrm{~V}$	-2		2	$\mu \mathrm{A} / \mathrm{V}$
ENABLE (EL5196A ONLY)						
ten	Enable Time			40		ns
t DIS	Disable Time			600		ns
IIHCE	CE Pin Input High Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{S}^{+}}$		0.8	6	$\mu \mathrm{A}$
IILCE	CE Pin Input Low Current	$\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{S}^{-}}$		0	-0.1	$\mu \mathrm{A}$
$\mathrm{V}_{\text {IHCE }}$	CE Input High Voltage for Disable		$\mathrm{V}_{\mathrm{S}^{+}-1}$			V
$\mathrm{V}_{\text {ILCE }}$	CE Input Low Voltage for Enable				$\mathrm{V}_{\mathrm{S}^{+}-3}$	V

NOTES:

1. Standard NTSC test, AC signal amplitude $=286 \mathrm{mV} \mathrm{P}_{\mathrm{P}-\mathrm{P},} \mathrm{f}=3.58 \mathrm{MHz}$.
2. Measured from the application of the $\overline{C E}$ logic signal until the output voltage is at the 50% point between initial and final values.

Typical Performance Curves

Frequency Response for Various C_{L}

Group Delay vs Frequency, All Gains

Typical Performance Curves (Continued)

Peaking vs Temperature

Typical Performance Curves (Continued)

2nd and 3rd Harmonic Distortion vs Frequency

Supply Current vs Supply Voltage

Typical Performance Curves (Continued)

Typical Performance Curves (Continued)

PSRR and CMRR vs Temperature

Offset Voltage vs Temperature

ICMR and IPSR vs Temperature

Typical Performance Curves (Continued)

Pin Descriptions

8-PIN SO	5-PIN SOT-23	6-PIN SOT-23	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
1,5			NC	Not connected	
2	4	4	IN-	Inverting input	Circuit 1
3	3	3	IN_{+}	Non-inverting input	(See circuit 1)
4	2	2	$\mathrm{V}_{S^{-}}$	Negative supply	
6	1	1	OUT	Output	Circuit 2
7	5	6	$\mathrm{V}_{\mathrm{S}^{+}}$	Positive supply	
8		5	$\overline{\mathrm{CE}}$	Chip enable	Circuit 3

Applications Information

Product Description

The EL5196 is a fixed gain amplifier that offers a wide -3dB bandwidth of 400 MHz and a low supply current of 9 mA per amplifier. The EL5196 works with supply voltages ranging from a single 5 V to 10 V and they are also capable of swinging to within 1 V of either supply on the output. This combination of high bandwidth and low power, together with aggressive pricing make the EL5196 the ideal choice for many low-power/high-bandwidth applications such as portable, handheld, or battery-powered equipment.

For varying bandwidth and higher gains, consider the EL5191 with 1 GHz on a 9 mA supply current or the EL5193 with 300 MHz on a 4 mA supply current. Versions include single, dual, and triple amp packages with 5-pin SOT-23, 16pin QSOP, and 8-pin or 16-pin SO outlines.

Power Supply Bypassing and Printed Circuit Board Layout

As with any high frequency device, good printed circuit board layout is necessary for optimum performance. Low impedance ground plane construction is essential. Surface mount components are recommended, but if leaded components are used, lead lengths should be as short as possible. The power supply pins must be well bypassed to reduce the risk of oscillation. The combination of a $4.7 \mu \mathrm{~F}$ tantalum capacitor in parallel with a $0.01 \mu \mathrm{~F}$ capacitor has been shown to work well when placed at each supply pin.

Disable/Power-Down

The EL5196A amplifier can be disabled placing its output in a high impedance state. When disabled, the amplifier supply current is reduced to $<150 \mu \mathrm{~A}$. The EL5196A is disabled when its $\overline{\mathrm{CE}}$ pin is pulled up to within 1 V of the positive supply. Similarly, the amplifier is enabled by floating or pulling its $\overline{\mathrm{CE}}$ pin to at least 3 V below the positive supply. For $\pm 5 \mathrm{~V}$ supply, this means that an EL5196A amplifier will be enabled when $\overline{\mathrm{CE}}$ is 2 V or less, and disabled when $\overline{\mathrm{CE}}$ is above 4 V . Although the logic levels are not standard TTL, this choice of logic voltages allows the EL5196A to be enabled by tying $\overline{\mathrm{CE}}$ to ground, even in 5 V single supply applications. The $\overline{\mathrm{CE}}$ pin can be driven from CMOS outputs.

Gain Setting

The EL5196A is built with internal feedback and gain resistors. The internal feedback resistors have equal value; as a result, the amplifier can be configured into gain of +1 , -1 , and +2 without any external resistors. Figure 1 shows the amplifier in gain of +2 configuration. The gain error is $\pm 2 \%$ maximum. Figure 2 shows the amplifier in gain of -1 configuration. For gain of $+1, \mathrm{IN}+$ and IN - should be connected together as shown in Figure 3. This configuration avoids the effects of any parasitic capacitance on the IN- pin. Since the internal feedback and gain resistors change with
temperature and process, external resistor should not be used to adjust the gain settings.

FIGURE 1. $A_{V}=+2$

FIGURE 2. $A_{V}=-1$

FIGURE 3. $A_{V}=+1$

Supply Voltage Range and Single-Supply Operation

The EL5196 has been designed to operate with supply voltages having a span of greater than or equal to 5 V and less than 11V. In practical terms, this means that the EL5196 will operate on dual supplies ranging from $\pm 2.5 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$. With single-supply, the EL5196 will operate from 5 V to 10 V .
As supply voltages continue to decrease, it becomes necessary to provide input and output voltage ranges that can get as close as possible to the supply voltages. The EL5196 has an input range which extends to within 2 V of either supply. So, for example, on $\pm 5 \mathrm{~V}$ supplies, the EL5196 has an input range which spans $\pm 3 \mathrm{~V}$. The output range of the EL5196 is also quite large, extending to within 1V of the supply rail. On a $\pm 5 \mathrm{~V}$ supply, the output is therefore capable of swinging from -4 V to +4 V . Single-supply output range is larger because of the increased negative swing due to the
external pull-down resistor to ground. Figure 4 shows an ACcoupled, gain of $+2,+5 \mathrm{~V}$ single supply circuit configuration.

FIGURE 4.

Video Performance

For good video performance, an amplifier is required to maintain the same output impedance and the same frequency response as DC levels are changed at the output. This is especially difficult when driving a standard video load of 150Ω, because of the change in output current with DC level. Previously, good differential gain could only be achieved by running high idle currents through the output transistors (to reduce variations in output impedance.) These currents were typically comparable to the entire 9 mA supply current of each EL5196 amplifier. Special circuitry has been incorporated in the EL5196 to reduce the variation of output impedance with current output. This results in dG and dP specifications of 0.0035% and 0.04°, while driving 150Ω at a gain of 2 .

Video performance has also been measured with a 500Ω load at a gain of +1 . Under these conditions, the EL5196 has dG and dP specifications of 0.03% and 0.05°, respectively.

Output Drive Capability

In spite of its low 9mA of supply current, the EL5196 is capable of providing a minimum of $\pm 95 \mathrm{~mA}$ of output current with a minimum of $\pm 95 \mathrm{~mA}$ of output drive.

Driving Cables and Capacitive Loads

When used as a cable driver, double termination is always recommended for reflection-free performance. For those applications, the back-termination series resistor will decouple the EL5196 from the cable and allow extensive
capacitive drive. However, other applications may have high capacitive loads without a back-termination resistor. In these applications, a small series resistor (usually between 5Ω and 50Ω) can be placed in series with the output to eliminate most peaking.

Current Limiting

The EL5196 has no internal current-limiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.

Power Dissipation

With the high output drive capability of the EL5196, it is possible to exceed the $125^{\circ} \mathrm{C}$ Absolute Maximum junction temperature under certain very high load current conditions. Generally speaking when R_{L} falls below about 25Ω, it is important to calculate the maximum junction temperature (TJMAX) for the application to determine if power supply voltages, load conditions, or package type need to be modified for the EL5196 to remain in the safe operating area. These parameters are calculated as follows:

$$
T_{J M A X}=T_{M A X}+\left(\theta_{J A} \times n \times P D_{M A X}\right)
$$

where:
$\mathrm{T}_{\text {MAX }}=$ Maximum ambient temperature
$\theta_{\mathrm{JA}}=$ Thermal resistance of the package
$\mathrm{n}=$ Number of amplifiers in the package
PD ${ }_{\text {MAX }}=$ Maximum power dissipation of each amplifier in the package

PD ${ }_{\text {MAX }}$ for each amplifier can be calculated as follows:

$$
\mathrm{PD}_{\text {MAX }}=\left(2 \times \mathrm{V}_{\mathrm{S}} \times \mathrm{I}_{\text {SMAX }}\right)+\left[\left(\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{\text {OUTMAX }}\right) \times \frac{\mathrm{V}_{\text {OUTMAX }}}{R_{\mathrm{L}}}\right]
$$

where:
$\mathrm{V}_{\mathrm{S}}=$ Supply voltage
ISMAX $=$ Maximum supply current of 1 A
$\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage (required)
$R_{L}=$ Load resistance

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems.
Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

